LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Classical Incompressible Fluid Dynamics as a Limit of Relativistic Compressible Fluid Dynamics

Photo from wikipedia

Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously… Click to show full abstract

Properly scaled, the relativistic Euler system for an arbitrary isentropic, causally compressible fluid is shown to formally converge, as c → ∞, to the non-relativistic Euler system for the homogeneously incompressible fluid. The limit is particularly interesting in the case of the relativistic stiff fluid, for which all modes are linearly degenerate in the sense of the theory of hyperbolic systems of conservation laws. This case connects the continuation problem for regular solutions to the incompressible version of the classical Euler equations with the old conjecture that for hyperbolic systems linear degeneracy of all modes prevent gradient blowup. One could say that questions in two different areas of the theory of partial differential equations are linked to each other through Einstein’s theory of relativity.

Keywords: fluid dynamics; fluid; compressible fluid; classical incompressible; dynamics limit; incompressible fluid

Journal Title: Archive for Rational Mechanics and Analysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.