LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Unified Model for Stress-Driven Rearrangement Instabilities

Photo from wikipedia

A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by… Click to show full abstract

A variational model to simultaneously treat Stress-Driven Rearrangement Instabilities, such as boundary discontinuities, internal cracks, external filaments, edge delamination, wetting, and brittle fractures, is introduced. The model is characterized by an energy displaying both elastic and surface terms, and allows for a unified treatment of a wide range of settings, from epitaxially-strained thin films to crystalline cavities, and from capillarity problems to fracture models. The existence of minimizing configurations is established by adopting the direct method of the Calculus of Variations. The compactness of energy-equibounded sequences and energy lower semicontinuity are shown with respect to a proper selected topology in a class of admissible configurations that extends the classes previously considered in the literature. In particular, graph-like constraints previously considered for the setting of thin films and crystalline cavities are substituted by the more general assumption that the free crystalline interface is the boundary, consisting of an at most fixed finite number m of connected components, of sets of finite perimeter. Finally, it is shown that, as $$m\rightarrow \infty $$ m → ∞ , the energy of minimal admissible configurations tends to the minimum energy in the general class of configurations without the bound on the number of connected components for the free interface.

Keywords: rearrangement instabilities; energy; stress driven; model; driven rearrangement

Journal Title: Archive for Rational Mechanics and Analysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.