In this article we associate to G, a truncated p-divisible $${{\mathcal {O}}}$$O-module of given signature, where $${{\mathcal {O}}}$$O is a finite unramified extension of $$\mathbb {Z}_p$$Zp, a filtration of G… Click to show full abstract
In this article we associate to G, a truncated p-divisible $${{\mathcal {O}}}$$O-module of given signature, where $${{\mathcal {O}}}$$O is a finite unramified extension of $$\mathbb {Z}_p$$Zp, a filtration of G by sub-$${{\mathcal {O}}}$$O-modules under the condition that its Hasse $$\mu $$μ-invariant is smaller than an explicit bound. This filtration generalise the one given when G is $$\mu $$μ-ordinary. The construction of the filtration relies on a precise study of the crystalline periods of a p-divisible $${{\mathcal {O}}}$$O-module. We then apply this result to families of such groups, in particular to strict neighbourhoods of the $$\mu $$μ-ordinary locus inside some PEL Shimura varieties.RésuméDans cet article, à G un groupe p-divisible tronqué muni d’une action d’une extension finie non ramifiée $${{\mathcal {O}}}$$O de $$\mathbb {Z}_p$$Zp, et de signature donnée, on associe sous une condition explicite sur son $$\mu $$μ-invariant de Hasse, une filtration de G par des sous-$${{\mathcal {O}}}$$O-modules qui étend la filtration canonique lorsque G est $$\mu $$μ-ordinaire. La construction se fait en étudiant les périodes cristallines des groupes p-divisibles avec action de $${{\mathcal {O}}}$$O. On applique ensuite cela aux familles de tels groupes, en particulier des voisinages stricts du lieu $$\mu $$μ-ordinaire dans des variétés de Shimura PEL.
               
Click one of the above tabs to view related content.