LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Weighted-blowup correspondence of orbifold Gromov–Witten invariants and applications

Photo by hanneskrupinski from unsplash

Let $$\mathsf {X}$$X be a compact symplectic orbifold groupoid with $$\mathsf {S}$$S being a compact symplectic sub-orbifold groupoid, and $${\underline{\mathsf {X}}_{\mathfrak {a}}}$$X̲a be the weight-$${\mathfrak {a}}$$a blowup of $$\mathsf {X}$$X… Click to show full abstract

Let $$\mathsf {X}$$X be a compact symplectic orbifold groupoid with $$\mathsf {S}$$S being a compact symplectic sub-orbifold groupoid, and $${\underline{\mathsf {X}}_{\mathfrak {a}}}$$X̲a be the weight-$${\mathfrak {a}}$$a blowup of $$\mathsf {X}$$X along $$\mathsf {S}$$S with $$\mathsf {Z}$$Z being the exceptional divisor. We show that there is a weighted-blowup correspondence between some certain absolute orbifold Gromov–Witten invariants of $$\mathsf {X}$$X relative to $$\mathsf {S}$$S and some certain relative orbifold Gromov–Witten invariants of the pair $$({\underline{\mathsf {X}}_{\mathfrak {a}}}|\mathsf {Z})$$(X̲a|Z). As an application, we prove that the symplectic uniruledness of symplectic orbifold groupoids is a weighted-blowup invariant.

Keywords: weighted blowup; blowup correspondence; gromov witten; mathsf; witten invariants; orbifold gromov

Journal Title: Mathematische Annalen
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.