Let $$\mathsf {X}$$X be a compact symplectic orbifold groupoid with $$\mathsf {S}$$S being a compact symplectic sub-orbifold groupoid, and $${\underline{\mathsf {X}}_{\mathfrak {a}}}$$X̲a be the weight-$${\mathfrak {a}}$$a blowup of $$\mathsf {X}$$X… Click to show full abstract
Let $$\mathsf {X}$$X be a compact symplectic orbifold groupoid with $$\mathsf {S}$$S being a compact symplectic sub-orbifold groupoid, and $${\underline{\mathsf {X}}_{\mathfrak {a}}}$$X̲a be the weight-$${\mathfrak {a}}$$a blowup of $$\mathsf {X}$$X along $$\mathsf {S}$$S with $$\mathsf {Z}$$Z being the exceptional divisor. We show that there is a weighted-blowup correspondence between some certain absolute orbifold Gromov–Witten invariants of $$\mathsf {X}$$X relative to $$\mathsf {S}$$S and some certain relative orbifold Gromov–Witten invariants of the pair $$({\underline{\mathsf {X}}_{\mathfrak {a}}}|\mathsf {Z})$$(X̲a|Z). As an application, we prove that the symplectic uniruledness of symplectic orbifold groupoids is a weighted-blowup invariant.
               
Click one of the above tabs to view related content.