We develop Denef–Loeser’s motivic integration to an equivariant version and use it to prove the full integral identity conjecture for regular functions. In comparison with Hartmann’s work, the equivariant Grothendieck… Click to show full abstract
We develop Denef–Loeser’s motivic integration to an equivariant version and use it to prove the full integral identity conjecture for regular functions. In comparison with Hartmann’s work, the equivariant Grothendieck ring defined in this article is more elementary and it yields the application to the conjecture.
               
Click one of the above tabs to view related content.