LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analytical shape recovery of a conductivity inclusion based on Faber polynomials

Photo by sunyu from unsplash

A conductivity inclusion, inserted in a homogeneous background, induces a perturbation in the background potential. This perturbation admits a multipole expansion whose coefficients are the so-called generalized polarization tensors (GPTs).… Click to show full abstract

A conductivity inclusion, inserted in a homogeneous background, induces a perturbation in the background potential. This perturbation admits a multipole expansion whose coefficients are the so-called generalized polarization tensors (GPTs). GPTs can be obtained from multistatic measurements. As a modification of GPTs, the Faber polynomial polarization tensors (FPTs) were recently introduced in two dimensions. In this study, we design two novel analytical non-iterative methods for recovering the shape of a simply connected inclusion from GPTs by employing the concept of FPTs. First, we derive an explicit expression for the coefficients of the exterior conformal mapping associated with an inclusion in a simple form in terms of GPTs, which allows us to accurately reconstruct the shape of an inclusion with extreme or near-extreme conductivity. Secondly, we provide an explicit asymptotic formula in terms of GPTs for the shape of an inclusion with arbitrary conductivity by considering the inclusion as a perturbation of its equivalent ellipse. With this formula, one can non-iteratively approximate an inclusion of general shape with arbitrary conductivity, including a straight or asymmetric shape. Numerical experiments demonstrate the validity of the proposed analytical approaches.

Keywords: conductivity inclusion; analytical shape; shape; inclusion; shape recovery

Journal Title: Mathematische Annalen
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.