LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recollements of self-injective algebras, and classification of self-injective diagram algebras

Photo by jareddrice from unsplash

Diagram algebras, in particular Brauer algebras, Birman–Murakami-Wenzl algebras and partition algebras, are used in representation theory and invariant theory of orthogonal and symplectic groups, in knot theory, in mathematical physics… Click to show full abstract

Diagram algebras, in particular Brauer algebras, Birman–Murakami-Wenzl algebras and partition algebras, are used in representation theory and invariant theory of orthogonal and symplectic groups, in knot theory, in mathematical physics and elsewhere. Classifications are known when such algebras are semisimple, of finite global dimension or quasi-hereditary. We obtain a characterisation of the self-injective case, which is shown to coincide with the (previously also unknown) symmetric case. The main tool is to show that indecomposable self-injective algebras in general are derived simple, that is, their bounded derived module categories admit trivial recollements only. As a consequence, self-injective algebras are seen to satisfy a derived Jordan–Hölder theorem.

Keywords: recollements self; injective algebras; diagram algebras; self injective; algebras classification

Journal Title: Mathematische Zeitschrift
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.