LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rankin–Selberg L-functions and “beyond endoscopy”

Photo from archive.org

Let f and g be two holomorphic cuspidal Hecke eigenforms on the full modular group $$ \text {SL}_{2}({\mathbb {Z}}). $$ We show that the Rankin–Selberg L-function $$L(s, f \times g)$$… Click to show full abstract

Let f and g be two holomorphic cuspidal Hecke eigenforms on the full modular group $$ \text {SL}_{2}({\mathbb {Z}}). $$ We show that the Rankin–Selberg L-function $$L(s, f \times g)$$ has no pole at $$s=1$$ unless $$ f=g $$, in which case it has a pole with residue $$ \frac{3}{\pi }\frac{(4\pi )^{k}}{\Gamma (k)} \Vert f \Vert ^2 $$, where $$ \Vert f\Vert $$ is the Petersson norm of f. Our proof uses the Petersson trace formula and avoids the Rankin–Selberg method.

Keywords: functions beyond; beyond endoscopy; vert; selberg functions; rankin selberg; vert vert

Journal Title: Mathematische Zeitschrift
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.