Given a finite quiver, its double may be viewed as its non-commutative “cotangent” space, and hence is a non-commutative symplectic space. Crawley-Boevey, Etingof and Ginzburg constructed the non-commutative reduction of… Click to show full abstract
Given a finite quiver, its double may be viewed as its non-commutative “cotangent” space, and hence is a non-commutative symplectic space. Crawley-Boevey, Etingof and Ginzburg constructed the non-commutative reduction of this space while Schedler constructed its quantization. We show that the non-commutative quantization and reduction commute with each other. Via the quantum and classical trace maps, such a commutativity induces the commutativity of the quantization and reduction on the space of quiver representations.
               
Click one of the above tabs to view related content.