LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of troxerutin on oxidative stress and expression of genes regulating mitochondrial biogenesis in doxorubicin-induced myocardial injury in rats

Photo from wikipedia

Because of limitation of doxorubicin (DOX) clinical application in chemotherapy due to its cardiotoxicity, finding new strategies to reduce DOX challenge and improve patients’ outcomes is crucial. Due to positive… Click to show full abstract

Because of limitation of doxorubicin (DOX) clinical application in chemotherapy due to its cardiotoxicity, finding new strategies to reduce DOX challenge and improve patients’ outcomes is crucial. Due to positive cardiovascular impacts of troxerutin (TXR), here we have investigated the effect of TXR on DOX-induced cardiotoxicity by evaluating the myocardial oxidative stress and expression of genes regulating mitochondrial biogenesis. Male Wistar rats (250–300 g) were randomly allocated into four groups: control, TXR, DOX, and TXR + DOX. Troxerutin (150 mg/kg) was orally administrated once a day through a gavage tube for 4 weeks before DOX challenge. The TXR-treated and time-matched control rats received intraperitoneal injection of DOX (20 mg/kg). Three days after DOX challenge, the left ventricular samples were obtained to determine the expression of genes regulating mitochondrial biogenesis via real-time PCR. Myocardial creatine kinase (CK-mB), oxidative stress markers, and mitochondrial function (generation of reactive oxygen species or ROS and ATP levels) were also evaluated using commercial kits and spectrophotometric and fluorometric methods. DOX administration significantly increased the levels of CK-mB, malondialdehyde (MDA), and mitochondrial ROS levels, while reduced the cellular ATP production and expression levels of SIRT-1, PGC-1α, and NRF-2 as well as superoxide dismutase, glutathione peroxidase, and catalase activity in comparison to control group ( P  < 0.05 to P  < 0.01). Pretreatment of DOX-received rats with TXR significantly upregulated the expression of all biogenesis genes and antioxidant enzymes with non-significant effect on catalase activity, and significantly reduced CK-mB and MDA levels toward control values ( P  < 0.05 to P  < 0.01). Mitochondrial ROS and ATP levels were also restored significantly by pretreatment with TXR ( P  < 0.05). The data suggested that preconditioning of rats with TXR had protective effect on DOX-induced cardiotoxicity through inducing antioxidative properties and restoring the mitochondrial function and the expression profiles of myocardial SIRT-1/PGC-1α/NRF-2 network.

Keywords: biogenesis; expression genes; effect; expression; dox; oxidative stress

Journal Title: Naunyn-Schmiedeberg's Archives of Pharmacology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.