Methotrexate (MTX) is used as an effective chemotherapeutic agent against autoimmune diseases and tumors. Oxidative stress and inflammation are involved in the pathogenesis of MTX-induced damage. This study aimed at… Click to show full abstract
Methotrexate (MTX) is used as an effective chemotherapeutic agent against autoimmune diseases and tumors. Oxidative stress and inflammation are involved in the pathogenesis of MTX-induced damage. This study aimed at examining the ameliorating effects of apigenin (API) as a natural antioxidant on MTX-induced hepatotoxicity. The rats were classified into four groups: group I: normal saline-treated, group II: MTX-treated (20 mg/kg, ip, single dose at day 7), group III: MTX + API-treated (20 mg/kg, po), and group IV: API-treated. API was administrated for 9 days. Alanine aminotransferase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST) were used as biochemical factors of MTX-induced hepatic injury. In hepatic tissues, the levels of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), and activities of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) as oxidative stress markers along with inflammatory factors such as tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL-1β) were assessed. Our results showed that MTX administration significantly increased ALP, ASP, ALT, MDA, NO, TNF-α, and IL-1β levels and significantly decreased antioxidant factors such as GSH, CAT, GPx, and SOD. The API pretreatment group showed a significant rise in hepatic antioxidant markers, besides significant reductions in the serum levels of AST, ALT, and ALP and hepatic content of MDA, TNF-α, NO, and IL-1β. In addition, the hepatoprotective effect of API was confirmed by histological evaluation of the liver. API can prevent MTX-induced hepatotoxicity through mitigation of oxidative stress and inflammation.
               
Click one of the above tabs to view related content.