We consider the time discretization based on Lie-Trotter splitting, for the nonlinear Schrödinger equation, in the semi-classical limit, with initial data under the form of WKB states. We show that… Click to show full abstract
We consider the time discretization based on Lie-Trotter splitting, for the nonlinear Schrödinger equation, in the semi-classical limit, with initial data under the form of WKB states. We show that both the exact and the numerical solutions keep a WKB structure, on a time interval independent of the Planck constant. We prove error estimates, which show that the quadratic observables can be computed with a time step independent of the Planck constant. The functional framework is based on time-dependent analytic spaces, in order to overcome a previously encountered loss of regularity phenomenon.
               
Click one of the above tabs to view related content.