LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asymptotic convergence of spectral inverse iterations for stochastic eigenvalue problems

Photo by joelfilip from unsplash

We consider and analyze applying a spectral inverse iteration algorithm and its subspace iteration variant for computing eigenpairs of an elliptic operator with random coefficients. With these iterative algorithms the… Click to show full abstract

We consider and analyze applying a spectral inverse iteration algorithm and its subspace iteration variant for computing eigenpairs of an elliptic operator with random coefficients. With these iterative algorithms the solution is sought from a finite dimensional space formed as the tensor product of the approximation space for the underlying stochastic function space, and the approximation space for the underlying spatial function space. Sparse polynomial approximation is employed to obtain the first one, while classical finite elements are employed to obtain the latter. An error analysis is presented for the asymptotic convergence of the spectral inverse iteration to the smallest eigenvalue and the associated eigenvector of the problem. A series of detailed numerical experiments supports the conclusions of this analysis.

Keywords: asymptotic convergence; space; convergence spectral; eigenvalue; spectral inverse

Journal Title: Numerische Mathematik
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.