LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Astragalin attenuates depression-like behaviors and memory deficits and promotes M2 microglia polarization by regulating IL-4R/JAK1/STAT6 signaling pathway in a murine model of perimenopausal depression.

Photo from wikipedia

RATIONALE Neuroinflammation can be alleviated via M2 microglia polarization, which could promote the recovery of perimenopausal depression. Astragalin (AST) possesses anti-neuroinflammatory activity. However, the effects of AST on perimenopausal depression… Click to show full abstract

RATIONALE Neuroinflammation can be alleviated via M2 microglia polarization, which could promote the recovery of perimenopausal depression. Astragalin (AST) possesses anti-neuroinflammatory activity. However, the effects of AST on perimenopausal depression and the molecular mechanism in regulating microglia polarization remained unknown. OBJECTIVES The purpose was to investigate the effects of AST on mice with simulated perimenopausal depression through regulating microglia polarization. It was aimed to clarify the molecular mechanism related to the interleukin-4 receptor (IL-4R)/janus kinase (JAK) 1/signal transducer and activator of transcription (STAT) 6 signaling pathway. METHODS The ovariectomy (OVX)/chronic unpredictable mild stress (CUMS)-induced murine model of perimenopausal depression was established and treated with AST. Then the depression-like behaviors and cognitive ability of mice were examined. After that, we detected the markers of microglia polarization and its regulatory signals. In addition, lipopolysaccharides (LPS)/adenosine triphosphate (ATP)-induced inflammatory BV2 model were used to verify the potential molecular mechanism. RESULTS AST alleviated perimenopausal depression-like behaviors and memory deficits. AST alleviated microglia activation and increased Ki67-positive cells in dentate gyrus (DG). The viability of BV2 decreased by LPS/ATP was raised by AST. Moreover, both in vivo and in vitro, AST switched microglia from M1 phenotype caused by OVX/CUMS or LPS/ATP to M2 phenotype. The IL-4R/JAK1/STAT6 signaling was restored, and the levels of inducible nitric oxide synthase (iNOS), nuclear NF-KappaB-p65 were reduced by AST. Importantly, AST showed prevention against the ubiquitination modification and degradation of STAT6. CONCLUSIONS Our results revealed new insights into molecular mechanism associated with microglia polarization in the effect of AST on the mouse model of perimenopausal depression.

Keywords: model; depression; microglia polarization; perimenopausal depression

Journal Title: Psychopharmacology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.