LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unravelling the reaction mechanism for the Claisen–Tishchenko condensation catalysed by Mn(I)-PNN complexes: a DFT study

Photo from archive.org

In this work, we study the potential catalytic role of previously identified Mn(I)-PNN complexes in the Claisen–Tishchenko reaction. An in-depth investigation of the reaction mechanism suggests that, after activation of… Click to show full abstract

In this work, we study the potential catalytic role of previously identified Mn(I)-PNN complexes in the Claisen–Tishchenko reaction. An in-depth investigation of the reaction mechanism suggests that, after activation of the 16e pre-catalyst, a hydrogenated 18e active species is generated. Based on calculations, rate-limiting barriers in a range of ca. 15–20 kcal mol−1 are seen for a model process consisting in the esterification of acetaldehyde into ethyl acetate at 100 °C and 1 atm reaction conditions (in toluene solution). Our hypothesis is centred on the role of the Mn centre as the only active site involved in both elementary steps, namely hydride borrowing and C–O bond formation. During this C–O bond formation step, diastereoisomers (RN,R) and (RN,S) [or their enantiomeric pairs (SN,S) and (SN,R)] can be generated, with calculations showing a preference towards the (RN,R) pathway.

Keywords: claisen tishchenko; pnn complexes; study; reaction; reaction mechanism

Journal Title: Theoretical Chemistry Accounts
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.