LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Clifford boundary conditions for periodic systems: the Madelung constant of cubic crystals in 1, 2 and 3 dimensions

Photo from archive.org

In this work we demonstrate the robustness of a real-space approach for the treatment of infinite systems described with periodic boundary conditions that we have recently proposed (Tavernier et al… Click to show full abstract

In this work we demonstrate the robustness of a real-space approach for the treatment of infinite systems described with periodic boundary conditions that we have recently proposed (Tavernier et al in J Phys Chem Lett 17:7090, 2000). In our approach we extract a fragment, i.e., a supercell, out of the infinite system, and then modifying its topology into the that of a Clifford torus which is a flat, finite and border-less manifold. We then renormalize the distance between two points by defining it as the Euclidean distance in the embedding space of the Clifford torus. With our method we have been able to calculate the reference results available in the literature with a remarkable accuracy, and at a very low computational effort. In this work we show that our approach is robust with respect to the shape of the supercell. In particular, we show that the Madelung constants converge to the same values but that the convergence properties are different. Our approach scales linearly with the number of atoms. The calculation of Madelung constants only takes a few seconds on a laptop computer for a relative precision of about 10-6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-6}$$\end{document}.

Keywords: clifford boundary; boundary conditions; usepackage; conditions periodic; approach; periodic systems

Journal Title: Theoretical Chemistry Accounts
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.