LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal ablation of target cancer cells using polydopamine-encapsulated gold nanorods as multifunctional agents

Photo by jontyson from unsplash

AbstractIn this study, we developed a novel “see-and-treat” theranostic system named “surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal therapy” for accurate cancer detection and real-time cancer cell ablation using the… Click to show full abstract

AbstractIn this study, we developed a novel “see-and-treat” theranostic system named “surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal therapy” for accurate cancer detection and real-time cancer cell ablation using the same Raman laser. Facilely synthesized polydopamine-encapsulated gold nanorods (AuNRs), which possess excellent biocompatibility and enhanced stability, were used as multifunctional agents. Under near-infrared (NIR) laser irradiation, polydopamine-encapsulated AuNRs show strong SERS effect and high photothermal conversion efficiency simultaneously. After immobilization of antibodies (anti-EpCAM), polydopamine-encapsulated gold nanorods show high specificity to target cancer cells. Tumor margins could be distinguished facilely by a quick SERS imaging process, which was confirmed by H&E staining results. By focusing the exciting light on detected cancer cells for a prolonged time, cancer cells could be ablated immediately without the need of other procedure. This “see-and-treat” theranostic strategy combining SERS imaging and real-time photothermal therapy using the same Raman laser is proposed for the first time. Experimental results confirmed the feasibility of our “SERS imaging-guided real-time photothermal therapy system.” This novel theranostic strategy can significantly improve the efficiency of cancer therapy in clinical application, allowing the effective ablation of cancer cells with no effects on surrounding healthy tissues. Graphical abstractᅟ

Keywords: real time; time; time photothermal; cancer cells; cancer; sers imaging

Journal Title: Analytical and Bioanalytical Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.