AbstractUltraviolet (UV) radiation could induce pyrimidine-related dimeric lesions in genomic DNA. Though the cyclobutane pyrimidine dimers (CPDs) are the most abundant UV-induced lesions, the pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) may… Click to show full abstract
AbstractUltraviolet (UV) radiation could induce pyrimidine-related dimeric lesions in genomic DNA. Though the cyclobutane pyrimidine dimers (CPDs) are the most abundant UV-induced lesions, the pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) may have more serious, potentially lethal, and mutagenic effects. It is important to have 6-4PP-containing oligodeoxynucleotides to be prepared for studying their adverse biological effects. Here, we developed a UV-irradiated water droplet method for the preparation of a biotinylated, 6-4PP-containing 10-mer oligodeoxynucleotide. By the use of HPLC purification and enrichment twice, the final yield is estimated to be about 8.1%. In contrast, without applying droplet technique, the direct UV irradiation against oligonucleotide-containing aqueous solution, the product yield is very low. The enzymatic hydrolyzation of the obtained product shows a 6-4PP characteristic ion transition of 545.12 → 432.13 in negative ion mode UHPLC-Q-TOF/MS. The established procedure for the preparation of 6-4PP-containing oligonucleotides is convenient with an improved yield. Graphical abstractᅟ
               
Click one of the above tabs to view related content.