LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A hierarchically porous composite monolith polypyrrole/octadecyl silica/graphene oxide/chitosan cryogel sorbent for the extraction and pre-concentration of carbamate pesticides in fruit juices

Photo from wikipedia

AbstractA hierarchically porous structured composite monolith sorbent of polypyrrole-coated graphene oxide and octadecyl silica incorporated in chitosan cryogel (PPY/GOx/C18/chitosan) was synthesized and used as solid-phase extraction sorbent for the determination… Click to show full abstract

AbstractA hierarchically porous structured composite monolith sorbent of polypyrrole-coated graphene oxide and octadecyl silica incorporated in chitosan cryogel (PPY/GOx/C18/chitosan) was synthesized and used as solid-phase extraction sorbent for the determination of carbamate pesticides. Various factors affecting the characteristics of the adsorbents (chemistry of the sorbent, polymerization time, concentrations of graphene oxide and octadecyl silica) and the extraction efficiency using the prepared sorbents, such as sample loading, desorption conditions, sample volume, sample flow rate, sample pH, and ionic strength, were investigated and optimized. Under the optimal conditions of sorbent preparation and extraction, the developed composite monolith sorbent provided wide linear responses from 1.0 to 500 μg L−1 for carbofuran and diethofencarb, from 0.5 to 500 μg L−1 for carbaryl, and from 2.0 to 500 μg L−1 for isoprocarb. The limits of detection using HPLC-UV at 203, 220, and 208 nm were in the range of 0.5–2.0 μg L−1. When the composite monolith sorbent was applied for the pre-concentration and determination of carbamate in fruit juices, good recoveries (84.1–99.5%) were achieved. The developed sorbents were porous and exhibited low back pressure enabling their use at high flow rates during sample loading. Extraction and clean-up were highly efficient, and the good physical and chemical stability of the sorbent enables reuse up to 13 times. Graphical abstractᅟ

Keywords: graphene oxide; sorbent; extraction; octadecyl silica; composite monolith

Journal Title: Analytical and Bioanalytical Chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.