LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Site-specific peak intensity ratio (SPIR) from 1D 2H/1H NMR spectra for rapid distinction between natural and synthetic nicotine and detection of possible adulteration

Photo from wikipedia

Abstract1H and 2H NMR spectra of 4 natural and synthetic nicotine samples were collected in a non-quantitative way and site-specific 2H/1H peak intensity ratio (SPIR) was calculated for 12 distinct… Click to show full abstract

Abstract1H and 2H NMR spectra of 4 natural and synthetic nicotine samples were collected in a non-quantitative way and site-specific 2H/1H peak intensity ratio (SPIR) was calculated for 12 distinct sites of nicotine. Experimental results illustrated that the SPIRs at sites of 6, 2′, and 5′β of natural nicotine were significantly different from those of the synthetic nicotine, and could be used for nicotine authentication as the measured SPIRs were indicative of the site-specific natural isotope fractionation. We demonstrated that this method could be applied to detect adulteration of natural nicotine with as low as 20% synthetic nicotine, without the need to measure the site-specific δD values, which usually required time-consuming quantitative 2H NMR and additional IRMS for the overall 2H/1H isotopic ratio determination. The distinguishable 2H/1H SPIRs of nicotine, which can be quickly measured by NMR in non-quantitative way, can serve as an attractive alternative tool for tobacco authentication. Graphical abstract

Keywords: nicotine; synthetic nicotine; site specific; ratio; nmr spectra

Journal Title: Analytical and Bioanalytical Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.