Simultaneous speciation of benzenediol isomers (BDIs), 1,2-benzenediol (catechol, CC), 1,3-benzenediol (resorcinol, RS), and 1,4-benzenediol (hydroquinone, HQ), was investigated by differential pulse voltammetry (DPV) using a graphite paste electrode (GPE) modified… Click to show full abstract
Simultaneous speciation of benzenediol isomers (BDIs), 1,2-benzenediol (catechol, CC), 1,3-benzenediol (resorcinol, RS), and 1,4-benzenediol (hydroquinone, HQ), was investigated by differential pulse voltammetry (DPV) using a graphite paste electrode (GPE) modified with Prussian blue-polyaniline nanocomposite. The modified GPE showed good stability, sensitivity, and selectivity properties for all the three BDIs. Prussian blue-doped nanosized polyaniline (PBNS-PANI) was synthesized first by using mechanochemical reactions between aniline and ferric chloride hexahydrate as the oxidants and then followed by the addition of potassium hexacyanoferrate(II) in a solid-state and template-free technique. The material was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The DPV measurements are performed in phosphate electrolyte solution with pH 4.0 at a potential range of − 0.1 to 1.0 V. The proposed modified electrode displayed a strong, stable, and continuous three well-separated oxidation peaks towards electrooxidation at potentials 0.20, 0.31, and 0.76 V for HQ, CC, and RS, respectively. The calibration curves were linear from 1 to 350.5 μM for both HQ and CC, while for RS, it was from 2 to 350.5 μM. The limit of detection was determined to be 0.18, 0.01, and 0.02 μM for HQ, CC, and RS, respectively. The analytical performance of the PBNS-PANI/GPE has been evaluated for simultaneous determination of HQ, CC, and RS in creek water, commercial hair dye, and skin whitening cream samples with satisfactory recoveries between 90 and 106%. Overall, we demonstrated that the presence of NS-PANI and PB resulted in a large redox-active surface area that enabled a promising analytical platform for simultaneous detection of BDIs. Graphical abstract
               
Click one of the above tabs to view related content.