LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Capillary flow-based sample preparation system for metabolomic analysis of mammalian cells in suspension

Photo from wikipedia

Sample preparation methodology is critical to obtaining reliable data for studying endogenous metabolites. Dependable preparation techniques require separation of cells from culture media, quenching of enzymatic activity, and extraction of… Click to show full abstract

Sample preparation methodology is critical to obtaining reliable data for studying endogenous metabolites. Dependable preparation techniques require separation of cells from culture media, quenching of enzymatic activity, and extraction of metabolites from the cells. Presented here is a simple, rapid, semi-automated metabolomic sample preparation technique for 20 μL samples of RAW 264.7 cells suspended in culture media. This method uses online filter-assisted electroporation-based cell lysis and chilled organic solvent extraction to prepare metabolomic samples from cells in suspension in 2 min. Experiments using an isotopically labeled adenosine triphosphate internal standard were carried out to ensure enzymatic quenching by monitoring the ratio of labeled adenosine diphosphate to adenosine triphosphate. Cells were metabolically labeled with 13C-glucose concurrent with sampling aliquots of the cell suspension over the course of 24 h. Incorporation of 13C into organic acid metabolites such as itaconate Cell lysates was analyzed by nano-reverse-phase liquid chromatography-mass spectrometry (nano-RP-LC-MS), showing incorporation of 13C into organic acid metabolites such as itaconate.

Keywords: cells suspension; sample preparation; flow based; capillary flow; preparation

Journal Title: Analytical and Bioanalytical Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.