LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Array-based microbial identification upon extracellular aminoglycoside residue sensing

Photo from wikipedia

Sensitive and rapid identification of pathogenic microorganisms is of great importance for clinical diagnosis and treatment. In this study, we developed an ultrasensitive colorimetric sensor array (CSA) based on the… Click to show full abstract

Sensitive and rapid identification of pathogenic microorganisms is of great importance for clinical diagnosis and treatment. In this study, we developed an ultrasensitive colorimetric sensor array (CSA) based on the interactions between aminoglycoside antibiotics (AMGs) and Ag nanoparticles decorated with β-cyclodextrin (AgNPs@β-CD) to discriminate microorganisms quickly and accurately. Microorganisms can absorb different amounts of AMGs after incubation. Upon the addition of AgNPs@β-CD, the corresponding extracellular AMG residues will bind to AgNPs@β-CD, leading to color changes due to the modifications in localized surface plasmon resonance. The array was developed using 4 AMGs as sensing elements and AgNPs@β-CD as the colorimetric probe to generate a unique colorimetric response pattern for each microorganism. Standard chemometric methods indicated excellent discrimination among 20 microorganisms at low concentrations of 2 × 106 CFU/mL. Therefore, this ultrasensitive CSA can be used for microbial discrimination portably and efficiently. Importantly, the concentration of microbial discrimination by our array is much lower than that of prior CSAs. This method of extracellular residue sensing also provided a new strategy to improve the sensitivity of conventional CSA in the discrimination of microorganisms, to measure the amount of intercellular uptake of AMGs by microorganisms, and to screen drugs that can easily be accumulated by the pathogenic microorganisms.

Keywords: array; residue sensing; based microbial; array based; identification; discrimination

Journal Title: Analytical and Bioanalytical Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.