β-Glucuronidase (β-GLU), a kind of hydrolase, is widely distributed in mammalian tissues, body fluids, and microbiota. Abnormal changes of β-GLU activity are often correlated with the occurrence of diseases and… Click to show full abstract
β-Glucuronidase (β-GLU), a kind of hydrolase, is widely distributed in mammalian tissues, body fluids, and microbiota. Abnormal changes of β-GLU activity are often correlated with the occurrence of diseases and deterioration of water quality. Therefore, detection of β-GLU activity is of great significance in biomedicine and environmental health such as cancer diagnosis and water monitoring. However, the conventional β-GLU activity assay suffers from the limitations of low sensitivity, poor accuracy, and complex procedure. With the development of analytical chemistry, many advances have been made in the detection of β-GLU activity in recent years. The sensors for β-GLU activity detection which have the advantages of rapid and reliable detection have been attracting increased attentions. In this paper, the principles, performances, and limitations of these β-GLU sensors, including colorimetric sensing, fluorescent sensing, electrochemical sensing for the determination of β-GLU activity, have been summarized and discussed. Moreover, the challenges and research trends of β-GLU activity assay are proposed.
               
Click one of the above tabs to view related content.