LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anomalies in Time-Ordered Products and Applications to the BV–BRST Formulation of Quantum Gauge Theories

Photo from wikipedia

We show that every (graded) derivation on the algebra of free quantum fields and their Wick powers in curved spacetimes gives rise to a set of anomalous Ward identities for… Click to show full abstract

We show that every (graded) derivation on the algebra of free quantum fields and their Wick powers in curved spacetimes gives rise to a set of anomalous Ward identities for time-ordered products, with an explicit formula for their classical limit. We study these identities for the Koszul-Tate and the full BRST differential in the BV-BRST formulation of perturbatively interacting quantum gauge theories, and clarify the relation to previous results. In particular, we show that the quantum BRST differential, the quantum antibracket and the higher-order anomalies form an $L_\infty$ algebra. The defining relations of this algebra ensure that the gauge structure is well-defined on cohomology classes of the quantum BRST operator, i.e., observables. Furthermore, we show that one can determine contact terms such that also the interacting time-ordered products of multiple interacting fields are well defined on cohomology classes. An important technical improvement over previous treatments is the fact that all our relations hold off-shell and are independent of the concrete form of the Lagrangian, including the case of open gauge algebras.

Keywords: quantum; gauge; time ordered; ordered products; brst formulation

Journal Title: Communications in Mathematical Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.