Using the Baum–Connes conjecture with coefficients, we develop a K-theory formula for reduced C*-algebras of strongly 0-E-unitary inverse semigroups, or equivalently, for a class of reduced partial crossed products. This… Click to show full abstract
Using the Baum–Connes conjecture with coefficients, we develop a K-theory formula for reduced C*-algebras of strongly 0-E-unitary inverse semigroups, or equivalently, for a class of reduced partial crossed products. This generalizes and gives a new proof of previous K-theory results of Cuntz, Echterhoff and the author. Our K-theory formula applies to a rich class of C*-algebras which are generated by partial isometries. For instance, as new applications which could not be treated using previous results, we discuss semigroup C*-algebras of Artin monoids, Baumslag-Solitar monoids and one-relator monoids, as well as C*-algebras generated by right regular representations of semigroups of number-theoretic origin, and C*-algebras attached to tilings.
               
Click one of the above tabs to view related content.