LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Rigorous Construction of the Supersymmetric Path Integral Associated to a Compact Spin Manifold

Photo by sunburned_surveyor from unsplash

We give a rigorous construction of the path integral in $${\mathcal {N}}=1/2$$ N = 1 / 2 supersymmetry as an integral map for differential forms on the loop space of… Click to show full abstract

We give a rigorous construction of the path integral in $${\mathcal {N}}=1/2$$ N = 1 / 2 supersymmetry as an integral map for differential forms on the loop space of a compact spin manifold. It is defined on the space of differential forms which can be represented by extended iterated integrals in the sense of Chen and Getzler–Jones–Petrack. Via the iterated integral map, we compare our path integral to the non-commutative loop space Chern character of Güneysu and the second author. Our theory provides a rigorous background to various formal proofs of the Atiyah–Singer index theorem for twisted Dirac operators using supersymmetric path integrals, as investigated by Alvarez-Gaumé, Atiyah, Bismut and Witten.

Keywords: rigorous construction; compact spin; supersymmetric path; spin manifold; path; path integral

Journal Title: Communications in Mathematical Physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.