We give a rigorous construction of the path integral in $${\mathcal {N}}=1/2$$ N = 1 / 2 supersymmetry as an integral map for differential forms on the loop space of… Click to show full abstract
We give a rigorous construction of the path integral in $${\mathcal {N}}=1/2$$ N = 1 / 2 supersymmetry as an integral map for differential forms on the loop space of a compact spin manifold. It is defined on the space of differential forms which can be represented by extended iterated integrals in the sense of Chen and Getzler–Jones–Petrack. Via the iterated integral map, we compare our path integral to the non-commutative loop space Chern character of Güneysu and the second author. Our theory provides a rigorous background to various formal proofs of the Atiyah–Singer index theorem for twisted Dirac operators using supersymmetric path integrals, as investigated by Alvarez-Gaumé, Atiyah, Bismut and Witten.
               
Click one of the above tabs to view related content.