LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment

Photo from wikipedia

Human movements are remarkably adaptive. We are capable of completing movements in a novel visuomotor environment with similar accuracy to those performed in a typical environment. In the current study,… Click to show full abstract

Human movements are remarkably adaptive. We are capable of completing movements in a novel visuomotor environment with similar accuracy to those performed in a typical environment. In the current study, we examined if the control processes underlying movements under typical conditions were different from those underlying novel visuomotor conditions. 16 participants were divided into two groups, one receiving continuous visual feedback during all reaches (CF), and the other receiving terminal feedback regarding movement endpoint (TF). Participants trained in a virtual environment by completing 150 reaches to three targets when (1) a cursor accurately represented their hand motion (i.e., typical environment) and (2) a cursor was rotated 45° clockwise relative to their hand motion (i.e., novel environment). Analyses of within-trial measures across 150 reaching trials revealed that participants were able to demonstrate similar movement outcomes (i.e., movement time and angular errors) regardless of visual feedback or reaching environment by the end of reach training. Furthermore, a reduction in variability across several measures (i.e., reaction time, movement time, time after peak velocity, and jerk score) over time showed that participants improved the consistency of their movements in both reaching environments. However, participants took more time and were less consistent in the timing of initiating their movements when reaching in a novel environment compared to reaching in a typical environment, even at the end of training. As well, angular error variability at different proportions of the movement trajectory was consistently greater when reaching in a novel environment across trials and within a trial. Together, the results suggest a greater contribution of offline control processes and less effective online corrective processes when reaching in a novel environment compared to when reaching in a typical environment.

Keywords: reaching typical; control processes; movement; time; environment; novel environment

Journal Title: Experimental Brain Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.