LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Firing rate trajectories of human occipitofrontalis motor units in response to triangular voluntary contraction intensity.

Photo from wikipedia

During voluntary contractions, limb muscle motor unit (MU) firing rates accelerate over a small force range and saturate in response to increasing contraction intensity. In comparison, facial muscles are cranially… Click to show full abstract

During voluntary contractions, limb muscle motor unit (MU) firing rates accelerate over a small force range and saturate in response to increasing contraction intensity. In comparison, facial muscles are cranially innervated, and some function without crossing joints. Therefore, the MU firing rate behaviour and characteristics of saturation were explored in a facial muscle that moves skin and facia during voluntary contractions. We evaluated the firing rate trajectory in response to triangular voluntary contraction ramps in the occipitofrontalis muscle of 11 adult participants. Intramuscular electromyography of the frontalis aspect was used to record single MU trains followed up to maximal voluntary contraction intensities. Firing rates were measured from each MU sample, with the firing rate trajectory fit as both exponential (i.e., saturation) and linear models that were compared statistically. The rate coding behaviour of frontalis MUs was broad, as the peak firing rate (mean 76 Hz) was ninefold greater than the firing rate at recruitment threshold (mean 8 Hz). Across 20 MU samples, only 40% (8 MU samples) were determined to have a firing rate trajectory that saturated and had slow acceleration in response to increasing voluntary drive until maximum. The exponential curve of the firing rate trajectory had ~ tenfold lower acceleration as compared to prior reports in limb muscles. These results across all MU samples indicated that voluntary control of the frontalis muscle requires relatively slower accelerating or linear MU firing rate trajectories, suggesting that movements of facial muscles may be directly representative of extrinsic synaptic inputs.

Keywords: response; voluntary contraction; firing rate; contraction intensity; rate

Journal Title: Experimental brain research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.