LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A new method for estimation and model selection:$$\rho $$ρ-estimation

Photo by thinkmagically from unsplash

The aim of this paper is to present a new estimation procedure that can be applied in various statistical frameworks including density and regression and which leads to both robust… Click to show full abstract

The aim of this paper is to present a new estimation procedure that can be applied in various statistical frameworks including density and regression and which leads to both robust and optimal (or nearly optimal) estimators. In density estimation, they asymptotically coincide with the celebrated maximum likelihood estimators at least when the statistical model is regular enough and contains the true density to estimate. For very general models of densities, including non-compact ones, these estimators are robust with respect to the Hellinger distance and converge at optimal rate (up to a possible logarithmic factor) in all cases we know. In the regression setting, our approach improves upon the classical least squares in many respects. In simple linear regression for example, it provides an estimation of the coefficients that are both robust to outliers and simultaneously rate-optimal (or nearly rate-optimal) for a large class of error distributions including Gaussian, Laplace, Cauchy and uniform among others.

Keywords: estimation; estimation model; new method; method estimation; model; model selection

Journal Title: Inventiones mathematicae
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.