LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Local $${\mathcal {P}}$$ entropy and stabilized automorphism groups of subshifts

Photo by makcedward from unsplash

For a homeomorphism $T \colon X \to X$ of a compact metric space $X$, the stabilized automorphism group $\text{Aut}^{(\infty)}(T)$ consists of all self-homeomorphisms of $X$ which commute with some power… Click to show full abstract

For a homeomorphism $T \colon X \to X$ of a compact metric space $X$, the stabilized automorphism group $\text{Aut}^{(\infty)}(T)$ consists of all self-homeomorphisms of $X$ which commute with some power of $T$. Motivated by the study of these groups in the context of shifts of finite type, we introduce a certain entropy for groups called local $\mathcal{P}$ entropy. We show that when $(X,T)$ is a non-trivial mixing shift of finite type, the local $\mathcal{P}$ entropy of the group $\text{Aut}^{(\infty)}(T)$ is determined by the topological entropy of $(X,T)$. We use this to give a complete classification of the isomorphism type of the stabilized automorphism groups of full shifts.

Keywords: mathcal entropy; entropy; local mathcal; stabilized automorphism; automorphism groups

Journal Title: Inventiones mathematicae
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.