LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Green’s Relations in Deterministic Finite Automata

Photo from archive.org

Green’s relations are a fundamental tool in the structure theory of semigroups. They can be defined by reachability in the (right/left/two-sided) Cayley graph. The equivalence classes of Green’s relations then… Click to show full abstract

Green’s relations are a fundamental tool in the structure theory of semigroups. They can be defined by reachability in the (right/left/two-sided) Cayley graph. The equivalence classes of Green’s relations then correspond to the strongly connected components. We study the complexity of Green’s relations in semigroups generated by transformations on a finite set. We show that, in the worst case, the number of equivalence classes is in the same order of magnitude as the number of elements. Another important parameter is the maximal length of a chain of strongly connected components. Our main contribution is an exponential lower bound for this parameter. There is a simple construction for an arbitrary set of generators. However, the proof for a constant size alphabet is rather involved. We also investigate the special cases of unary and binary alphabets. All these results are extended to deterministic finite automata and their syntactic semigroups.

Keywords: green relations; finite automata; relations deterministic; deterministic finite

Journal Title: Theory of Computing Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.