LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Existence of parabolic minimizers to the total variation flow on metric measure spaces

Photo from wikipedia

We give an existence proof for variational solutions u associated to the total variation flow. Here, the functions being considered are defined on a metric measure space $$({\mathcal {X}}, d,… Click to show full abstract

We give an existence proof for variational solutions u associated to the total variation flow. Here, the functions being considered are defined on a metric measure space $$({\mathcal {X}}, d, \mu )$$ ( X , d , μ ) satisfying a doubling condition and supporting a Poincaré inequality. For such parabolic minimizers that coincide with a time-independent Cauchy–Dirichlet datum $$u_0$$ u 0 on the parabolic boundary of a space-time-cylinder $$\Omega \times (0, T)$$ Ω × ( 0 , T ) with $$\Omega \subset {\mathcal {X}}$$ Ω ⊂ X an open set and $$T > 0$$ T > 0 , we prove existence in the weak parabolic function space $$L^1_w(0, T; \mathrm {BV}(\Omega ))$$ L w 1 ( 0 , T ; BV ( Ω ) ) . In this paper, we generalize results from a previous work by Bögelein, Duzaar and Marcellini by introducing a more abstract notion for $$\mathrm {BV}$$ BV -valued parabolic function spaces. We argue completely on a variational level.

Keywords: variation flow; total variation; parabolic minimizers; metric measure

Journal Title: manuscripta mathematica
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.