LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Perfusion-weighted techniques in MRI grading of pediatric cerebral tumors: efficiency of dynamic susceptibility contrast and arterial spin labeling

Photo from wikipedia

Dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion MRI are applied in pediatric brain tumor grading, but their value for clinical daily practice remains unclear. We explored the… Click to show full abstract

Dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion MRI are applied in pediatric brain tumor grading, but their value for clinical daily practice remains unclear. We explored the ability of ASL and DSC to distinguish low- and high-grade lesions, in an unselected cohort of pediatric cerebral tumors. We retrospectively compared standard perfusion outcomes including blood volume, blood flow, and time parameters from DSC and ASL at 1.5T or 3T MRI scanners of 46 treatment-naive patients by drawing ROI via consensus by two neuroradiologists on the solid portions of every tumor. The discriminant abilities of perfusion parameters were evaluated by receiver operating characteristic (ROC) over the entire cohort and depending on the tumor location and the magnetic field. ASL and DSC parameters showed overall low to moderate performances to distinguish low- and high-grade tumors (area under the curve: between 0.548 and 0.697). Discriminant abilities were better for tumors located supratentorially (AUC between 0.777 and 0.810) than infratentorially, where none of the metrics reached significance. We observed a better differentiation between low- and high-grade cancers at 3T than at 1.5-T. For infratentorial tumors, time parameters from DSC performed better than the commonly used metrics (AUC ≥ 0.8). DSC and ASL show moderate abilities to distinguish low- and high-grade brain tumors in an unselected cohort. Absolute value of K2, TMAX, tMIP, and normalized value of TMAX of the DSC appear as an alternative to conventional parameters for infratentorial tumors. Three Tesla evaluation should be favored over 1.5-Tesla.

Keywords: perfusion; arterial spin; susceptibility contrast; spin labeling; low high; dynamic susceptibility

Journal Title: Neuroradiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.