LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Perfluorobutanoic Acid (PFBA) on the Developmental Cycle and Damage Potential of the Beet Armyworm Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae)

Photo by sharonmccutcheon from unsplash

Perfluorobutanoic acid (PFBA), one of the short-chain replacement perfluoroalkyl substances, has been shown to accumulate in plants. The potential of PFBA to modulate the developmental cycle of the beet armyworm,… Click to show full abstract

Perfluorobutanoic acid (PFBA), one of the short-chain replacement perfluoroalkyl substances, has been shown to accumulate in plants. The potential of PFBA to modulate the developmental cycle of the beet armyworm, Spodoptera exigua, a polyphagous pest, was investigated. Second-instar larvae were fed with PFBA-spiked artificial diets and leaves from soybean plants grown with PFBA-spiked irrigation water. Spiked PFBA concentrations were 200 μg/kg for the artificial diet, whereas 405 to 15,190 ng/kg accumulated in the soybean leaves. The larvae fed with the PFBA-spiked diet showed a significant increase in weight gain compared with the controls over a 7-day exposure period. A similar weight gain trend was observed with larvae fed with the PFBA-containing soybean leaves, with the dose–response data fitting into a Brain-Cousens hormesis model with a 57% stimulation over controls. The artificial diet treatments showed 66.7% metamorphosed larva to pupa at 9 days after exposure (dpe) compared with 33.3% of the controls. The adult emergence at 16-dpe followed a similar trend with 57.7% and 33.3%, respectively, for the exposed and control groups. The duration of transition from larvae to adults was more symmetrical and 0.5 day faster for the exposed groups over controls. The beet armyworm caused more damage on leaves from the PFBA exposed plants in a nonmonotonic dose–response manner. The results suggest PFBA may have a stimulatory impact on some hormonal signaling pathways at low doses.

Keywords: developmental cycle; perfluorobutanoic acid; acid pfba; pfba; beet armyworm

Journal Title: Archives of Environmental Contamination and Toxicology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.