LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient production of the anti-aging drug Cycloastragenol: insight from two Glycosidases by enzyme mining.

Photo from wikipedia

The telomerase activator cycloastragenol (CA) is regarded as a potential anti-aging drug with promising applications in the food and medical industry. However, one remaining challenge is the low efficiency of… Click to show full abstract

The telomerase activator cycloastragenol (CA) is regarded as a potential anti-aging drug with promising applications in the food and medical industry. However, one remaining challenge is the low efficiency of CA production. Herein, we developed an enzyme-based approach by applying two enzymes (β-xylosidase: Xyl-T; β-glucosidase: Bgcm) for efficient CA production. Both key glycosidases, mined by activity tracking or homology sequence screening, were successfully over-expressed and showed prominent enzymatic activity profiles, including widely pH stability (Xyl-T: pH 3.0-8.0; Bgcm: pH 4.0-10.0), high catalytic efficiency (kcat/Km: 0.096 mM-1s-1 (Xyl-T) and 3.08 mM-1s-1 (Bgcm)), and mesophilic optimum catalytic temperature (50 °C). Besides, the putative catalytic residues (Xyl-T: Asp311/Glu 521; Bgcm: Asp311/Glu 521) and the potential substrate-binding mechanism of Xyl-T and Bgcm were predicted by comprehensive computational analysis, providing valuable insight into the hydrolysis of substrates at the molecular level. Notably, a rationally designed two-step reaction process was introduced to improve the CA yield and increased up to 96.5% in the gram-scale production, providing a potential alternative for the industrial CA bio-production. In essence, the explored enzymes, the developed enzyme-based approach, and the obtained knowledge from catalytic mechanisms empower researchers to further engineer the CA production and might be applied for other chemicals synthesis. KEY POINTS: • A β-xylosidase and a β-glucosidase were mined to hydrolyze ASI into CA. • The two recombinant glycosidases showed prominent catalytic profiles. • Two-step enzymatic catalysis for CA production from ASI was developed. Graphical abstract.

Keywords: efficient production; production; aging drug; bgcm; anti aging

Journal Title: Applied microbiology and biotechnology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.