LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Degradation of the low-calorie sugar substitute 5-ketofructose by different bacteria

Photo from wikipedia

Abstract There is an increasing public awareness about the danger of dietary sugars with respect to their caloric contribution to the diet and the rise of overweight throughout the world.… Click to show full abstract

Abstract There is an increasing public awareness about the danger of dietary sugars with respect to their caloric contribution to the diet and the rise of overweight throughout the world. Therefore, low-calorie sugar substitutes are of high interest to replace sugar in foods and beverages. A promising alternative to natural sugars and artificial sweeteners is the fructose derivative 5-keto-D-fructose (5-KF), which is produced by several Gluconobacter species. A prerequisite before 5-KF can be used as a sweetener is to test whether the compound is degradable by microorganisms and whether it is metabolized by the human microbiota. We identified different environmental bacteria (Tatumella morbirosei, Gluconobacter japonicus LMG 26773, Gluconobacter japonicus LMG 1281, and Clostridium pasteurianum) that were able to grow with 5-KF as a substrate. Furthermore, Gluconobacter oxydans 621H could use 5-KF as a carbon and energy source in the stationary growth phase. The enzymes involved in the utilization of 5-KF were heterologously overproduced in Escherichia coli, purified and characterized. The enzymes were referred to as 5-KF reductases and belong to three unrelated enzymatic classes with highly different amino acid sequences, activities, and structural properties. Furthermore, we could show that 15 members of the most common and abundant intestinal bacteria cannot degrade 5-KF, indicating that this sugar derivative is not a suitable growth substrate for prokaryotes in the human intestine. Key points • Some environmental bacteria are able to use 5-KF as an energy and carbon source. • Four 5-KF reductases were identified, belonging to three different protein families. • Many gut bacteria cannot degrade 5-KF. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11168-3.

Keywords: calorie sugar; low calorie; degradation low; gluconobacter; sugar

Journal Title: Applied Microbiology and Biotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.