LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hypermetabolism in the cerebellum and brainstem and cortical hypometabolism are independently associated with cognitive impairment in Parkinson’s disease

Photo by jordansteranka from unsplash

PurposeCognitive impairment (CI) in Parkinson’s disease (PD) is associated with a widespread reduction in cortical glucose metabolism and relative increases in the cerebellum and brainstem as measured using 18F-fluorodesoxyglucose (FDG)… Click to show full abstract

PurposeCognitive impairment (CI) in Parkinson’s disease (PD) is associated with a widespread reduction in cortical glucose metabolism and relative increases in the cerebellum and brainstem as measured using 18F-fluorodesoxyglucose (FDG) PET. We separately analysed CI-related hypermetabolism and hypometabolism in comparison with neuropsychological test performance and investigated whether increased FDG uptake is a true feature of the disease or a normalization effect.MethodsThe study included 29 subjects (12 patients with PD, 10 patients with PD dementia and 7 healthy controls") who underwent FDG PET and comprehensive neuropsychological testing. Test performance across various cognitive domains was summarized in a cognitive staging score. Metabolic indices reflecting associated changes in regional cerebral glucose metabolism (rCGM) were calculated: index(−) for CI-related hypometabolism, and index(+) for CI-related hypermetabolism. We tested whether index(+) offered additional value in predicting the severity of CI in multiple regression analysis.ResultsAt higher stages of CI, increased rCGM was found in the posterior cerebellar vermis and pons, associated with impaired attention, executive function and memory. Reduced rCGM was found in various cortical regions in agreement with the literature. In multiple regression analysis, both indices independently predicted the severity of CI with a whole-model R2 of 0.68 (index(−), p = 0.0006; index(+), p = 0.013), confirmed by alternative analyses combining different reference tissues in the multiple regression.ConclusionWe found CI-related hypermetabolism in cerebellar regions that are known to be involved in several cognitive functions and in the pons. These alterations may represent compensatory activation of cognitive networks including cerebropontocerebellar tracts.

Keywords: index; hypometabolism; hypermetabolism; disease; parkinson disease; impairment parkinson

Journal Title: European Journal of Nuclear Medicine and Molecular Imaging
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.