LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The good rays: let them shine!

Photo from wikipedia

Nobody will deny that high-dose ionizing radiation known from nuclear bombs and power plant catastrophes is extremely dangerous and something that we need to guard against with strict security measures.… Click to show full abstract

Nobody will deny that high-dose ionizing radiation known from nuclear bombs and power plant catastrophes is extremely dangerous and something that we need to guard against with strict security measures. Nor will anybody contest the need for rules for low-dose ionizing radiation (LDR) in medical use to safeguard staff and patients from excessive exposure, not to mention healthy control subjects needed for comparison in research studies. It seems, however, that we have gone too far in protection against LDR, thereby cutting ourselves off from gaining crucial new knowledge, improving diagnostics and achieving breakthroughs in the management of serious diseases, in which refined medical imaging employing LDR would no doubt make a substantial difference. Current rules and limitations on the use of medical LDR are based on a hypothetical model, the linear no threshold (LNT) concept, which has never been proved to be right. The result is too tight regulations that limit the development and use of molecular imaging and prevent its potential from being fully unfolded to the benefit of patients and society. Since this serves no-one’s interest, the rules need to be changed to facilitate and not complicate the realization of this potential. This excessive restriction is particularly regrettable considering that molecular imaging is about to revolutionize our perception of many of the worst diseases that afflict mankind and to significantly improve their management. Here we argue that LDR is widely inert and should be used for medical imaging more extensively and without restrictions as long as the effective dose to the patient from a single exposure or the annual cumulated dose from repeat examination stays below 100 mSv, or even 200 mSv. It is time that the authorities and regulatory boards acknowledge this and act accordingly instead of being stuck with a hypothetical model that has little to do with reality, and the validity of which has been consistently disproved. This necessary change will mean a goodbye to the LNT model and a long-needed relaxation of the current regulations with their excessively low arbitrary dose limits which, unfortunately, are still recognized by the scientific ethics committees. To trigger this highly required change is the main purpose of this editorial. The misfortune of radiation regulation was the introduction of the LNT concept about 70 years ago. The concept is based on the opinions of the American biologist and Nobel Laureate Hermann Joseph Muller, i.e. it is a purely theoretical model, stating that tissue damage increases linearly with the radiation dose, and that any radiation, no matter how small the dose, causes damage (Fig. 1a) [1]. Confronting this concept is the view that LDR is harmless and within certain dose ranges perhaps even beneficial and desirable [2]. This is a perception that with time is being shared by many professionals, since a multitude of observations accumulated during the last 100 years have, piece by piece and almost unanimously, contradicted the LNTconcept, which, however, the authorities have chosen to disregard for decades. A biphasic response curve (Fig. 1b) is what toxicologist Edward J. Calabrese and coworkers from the study of thousands of biological systems consider nature’s ‘law’ rather than a linear association, meaning that an agent at low doses may stimulate, while at higher doses will increasingly inhibit or damage, whereas a linear relationship, like the one postulated by the LNT hypothesis, is hardly ever encountered in the biological setting [3, 4]. Long before the advent of the LNT model, the first studies contradicting it had appeared. In an elegant study, Davey convincingly demonstrated in 1919 that small doses of X-rays apparently prolonged the life of the flour beetle Tribolium confusum (Fig. 2a) [5]. Since then, as pointed out by highly experienced professionals including Ludwig E. Feinendegen and Myron Pollycove, Ball statistically significant, adequately controlled epidemiological studies confirm LDR is associated with reduced mortality from all causes, decreased cancer * Poul F. Høilund-Carlsen [email protected]

Keywords: good rays; model; ldr; molecular imaging; rays let; radiation

Journal Title: European Journal of Nuclear Medicine and Molecular Imaging
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.