18F-FDopa PET imaging of gliomas is routinely interpreted with standardized uptake value (SUV)-derived indices. This study aimed to determine the added value of dynamic 18F-FDopa PET parameters for predicting the… Click to show full abstract
18F-FDopa PET imaging of gliomas is routinely interpreted with standardized uptake value (SUV)-derived indices. This study aimed to determine the added value of dynamic 18F-FDopa PET parameters for predicting the molecular features of newly diagnosed gliomas. We retrospectively included 58 patients having undergone an 18F-FDopa PET for establishing the initial diagnosis of gliomas, whose molecular features were additionally characterized according to the WHO 2016 classification. Dynamic parameters, involving time-to-peak (TTP) values and curve slopes, were tested for the prediction of glioma types in addition to current static parameters, i.e., tumor-to-normal brain or tumor-to-striatum SUV ratios and metabolic tumor volume (MTV). There were 21 IDH mutant without 1p/19q co-deletion (IDH+/1p19q−) gliomas, 16 IDH mutants with 1p/19q co-deletion (IDH+/1p19q+) gliomas, and 21 IDH wildtype (IDH−) gliomas. Dynamic parameters enabled differentiating the gliomas according to these molecular features, whereas static parameters did not. In particular, a longer TTP was the single best independent predictor for identifying (1) IDH mutation status (area under the curve (AUC) of 0.789, global accuracy of 74% for the criterion of a TTP ≥ 5.4 min) and (2) 1p/19q co-deletion status (AUC of 0.679, global accuracy of 69% for the criterion of a TTP ≥ 6.9 min). Moreover, the TTP from IDH− gliomas was significantly shorter than those from both IDH+/1p19q− and IDH+/1p19q+ (p ≤ 0.007). Prediction of the molecular features of newly diagnosed gliomas with 18F-FDopa PET and especially of the presence or not of an IDH mutation, may be obtained with dynamic but not with current static uptake parameters.
               
Click one of the above tabs to view related content.