To illustrate the applications of various imaging tools including conventional MDCT, MRI including DWI, CT & MRI radiomics, FDG & DOTATATE PET-CT for diagnosis, staging, grading, prognostication, treatment planning and… Click to show full abstract
To illustrate the applications of various imaging tools including conventional MDCT, MRI including DWI, CT & MRI radiomics, FDG & DOTATATE PET-CT for diagnosis, staging, grading, prognostication, treatment planning and assessing treatment response in cases of pancreatic neuroendocrine neoplasms (PNENs). Gastroenteropancreatic neuroendocrine neoplasms (GEP NENs) are very diverse clinically & biologically. Their treatment and prognosis depend on staging and primary site, as well as histological grading, the importance of which is also reflected in the recently updated WHO classification of GEP NENs. Grade 3 poorly differentiated neuroendocrine carcinomas (NECs) are aggressive & nearly always advanced at diagnosis with poor prognosis; whereas Grades-1 and 2 well-differentiated neuroendocrine tumors (NETs) can be quite indolent. Grade 3 well-differentiated NETs represent a new category of neoplasm with an intermediate prognosis. Importantly, the evidence suggest grade heterogeneity can occur within a given tumor and even grade progression can occur over time. Emerging evidence suggests that several non-invasive qualitative and quantitative imaging features on CT, dual-energy CT (DECT), MRI, PET and somatostatin receptor imaging with new tracers, as well as texture analysis, may be useful to grade, prognosticate, and accurately stage primary NENs. Imaging features may also help to inform choice of treatment and follow these neoplasms post-treatment. GEP NENs treatment and prognosis depend on the stage as well as histological grade of the tumor. Traditional ways of imaging evaluation for diagnosis and staging does not yet yield sufficient information to replace operative and histological evaluation. Recognition of important qualitative imaging features together with quantitative features and advanced imaging tools including functional imaging with DWI MRI, DOTATATE PET/CT, texture analysis with radiomics and radiogenomic features appear promising for more accurate staging, tumor risk stratification, guiding management and assessing treatment response.
               
Click one of the above tabs to view related content.