LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamics of hematopoiesis is disrupted by impaired hematopoietic microenvironment in a mouse model of hemophagocytic lymphohistiocytosis

Photo by pavelanoshin from unsplash

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory disorder. We found recently that repeated lipopolysaccharide (LPS) treatment induces HLH-like features in senescence-accelerated mice (SAMP1/TA-1) but not in senescence-resistant control mice… Click to show full abstract

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory disorder. We found recently that repeated lipopolysaccharide (LPS) treatment induces HLH-like features in senescence-accelerated mice (SAMP1/TA-1) but not in senescence-resistant control mice (SAMR1). In this study, we analyzed the dynamics of hematopoiesis in this mouse model of HLH. When treated repeatedly with LPS, the numbers of myeloid progenitor cells (CFU-GM) and B-lymphoid progenitor cells (CFU-preB) in the bone marrow (BM) rapidly decreased after each treatment in both strains. The number of CFU-GM in SAMP1/TA-1 and SAMR1, and of CFU-preB in SAMR1, returned to pretreatment levels by 7 days after each treatment. However, the recovery in the number of CFU-preB in SAMP1/TA-1 was limited. In both strains, the BM expression of genes encoding positive regulators of myelopoiesis (granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and interleukin (IL)-6), and negative regulators of B lymphopoiesis (tumor necrosis factor (TNF)-α) was increased. The expression of genes encoding positive regulators of B lymphopoiesis (stromal-cell derived factor (SDF)-1, IL-7, and stem cell factor (SCF)) was persistently decreased in SAMP1/TA-1 but not in SAMR1. Expression of the gene encoding p16 INK4a and the proportion of β-galactosidase-positive cells were increased in cultured stromal cells obtained from LPS-treated SAMP1/TA-1 but not in those from LPS-treated SAMR1. LPS treatment induced qualitative changes in stromal cells, which comprise the microenvironment supporting appropriate hematopoiesis, in SAMP1/TA-1; these stromal cell changes are inferred to disrupt the dynamics of hematopoiesis. Thus, hematopoietic tissue is one of the organs that suffer life-threatening damage in HLH.

Keywords: hematopoiesis; dynamics hematopoiesis; hemophagocytic lymphohistiocytosis; factor; mouse model

Journal Title: Annals of Hematology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.