AdpA is studied and considered as a pleiotropic regulator which is involved in morphological development and secondary metabolism in many Streptomyces. In this study, AdpAsd, which was cloned from toyocamycin… Click to show full abstract
AdpA is studied and considered as a pleiotropic regulator which is involved in morphological development and secondary metabolism in many Streptomyces. In this study, AdpAsd, which was cloned from toyocamycin (TM)-producing strain Streptomyces diastatochromogenes 1628, was identified as an ortholog of AdpA and belongs to a large subfamily of the AraC/XylS family. In order to elucidate the correlation of AdpAsd with TM biosynthesis and morphological differentiation, adpAsd was placed under the control of the ermE* promoter in plasmid pIB139. By intergeneric conjugation, the resulting plasmid pIB139-adpAsd was introduced into mutant S. diastatochromogenes 1628-T62 that is defective in sporulation and had limited TM production as well as transcriptional level of gene adpAsd, yielding the recombinant strain S. diastatochromogenes 1628-T62A. As expected, due to over-expression of adpAsd, the S. diastatochromogenes 1628-T62A restored spore formation to a certain extent compared with control strain S. diastatochromogenes 1628-T62. Moreover, compared with control strain 1628-T62, the TM production of recombinant 1628-T62A was increased by 120.1% on 5 l fermenter. In addition, by using semi-quantitative reverse transcription-PCR analysis, we discovered that the transcriptional levels of gene adpAsd and the all toy genes involved in TM biosynthesis were elevated in recombinant 1628-T62A compared with S. diastatochromogenes 1628-T62. These results confirm that cloned adpAsd plays a positive role in TM biosynthesis and morphological differentiation.
               
Click one of the above tabs to view related content.