Clostridium difficile is normally present in low numbers in a healthy adult gastro-intestinal tract (GIT). Drastic changes in the microbial population, e.g., dysbiosis caused by extensive treatment with antibiotics, stimulates… Click to show full abstract
Clostridium difficile is normally present in low numbers in a healthy adult gastro-intestinal tract (GIT). Drastic changes in the microbial population, e.g., dysbiosis caused by extensive treatment with antibiotics, stimulates the growth of resistant strains and the onset of C. difficile infection (CDI). Symptoms of infection varies from mild diarrhea to colitis (associated with dehydration and bleeding), pseudomembranous colitis with yellow ulcerations in the mucosa of the colon, to fulminant colitis (perforation of the gut membrane), and multiple organ failure. Inflamed epithelial cells and damaged mucosal tissue predisposes the colon to other opportunistic pathogens such as Clostridium perfringens, Staphylococcus aureus, Klebsiella oxytoca, Candida spp., and Salmonella spp. This may lead to small intestinal bacterial overgrowth (SIBO), sepsis, toxic megacolon, and even colorectal cancer. Many stains of C. difficile are resistant to metronidazole and vancomycin. Vaccination may be an answer to CDI, but requires more research. Success in treatment with probiotics depends on the strains used. Oral or rectal fecal transplants are partly effective, as spores in the small intestine may germinate and colonize the colon. The effect of antibiotics on C. difficile and commensal gut microbiota is summarized and changes in gut physiology are discussed. The need to search for non-antibiotic methods in the treatment of CDI and C. difficile-associated disease (CDAD) is emphasized.
               
Click one of the above tabs to view related content.