LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of Extracellular Protease from the Haloarcheon Halococcus sp. Strain GUGFAWS-3 (MF425611)

Halococcus agarilyticus GUGFAWS-3 (MF425611) was isolated from a marine white sponge of Haliclona sp., inhabiting the rocks in the intertidal region of Anjuna, Goa, India. Uniquely, the microbe simultaneously produces… Click to show full abstract

Halococcus agarilyticus GUGFAWS-3 (MF425611) was isolated from a marine white sponge of Haliclona sp., inhabiting the rocks in the intertidal region of Anjuna, Goa, India. Uniquely, the microbe simultaneously produces two halo-extremozymes in 25% NaCl, namely protease and lipase at 49.5 ± 0.4 and 3.67 ± 0.02 (U mL−1), respectively. The protease is constitutively produced in starch mineral salts medium with consistent 4 ± 1.0 mm zone of enzyme production, regardless of the non-availability of protein as substrate. The ethanol precipitated enzyme on dialysis and Sephadex G-200 gel filtration chromatography was partially purified to 12.26-fold and was active between 20 and 80 °C, 0–5 M NaCl, and pH 3–13. Optimum activity, however, was at 70 °C, 3 M NaCl, and pH 7. The enzyme was thermo stable at 70 °C with 50.26 ± 2.40% of relative enzyme activity at 75 min. Furthermore, it was stable in the presence of polar and non-polar organic solvents, detergents, and hydrocarbons. Several metal cations enhanced its activity in the order of Ca2+ > Ni2+ > Fe3+ > Co2+ > Mg2+ > Cu2+ > Mn2+. Dependence of enzyme on cysteine; serine, and metal ions was confirmed by β-mercaptoethanol; PMSF and EDTA, respectively which induced its partial inhibition. Additionally, protease inhibited in vitro biofilm formation in Staphylococcus aureus. Conclusively, the production of a neutral halo-thermophilic protease is reported for the first time in the genus Halococcus.

Keywords: halococcus; protease haloarcheon; extracellular protease; characterization extracellular; gugfaws mf425611

Journal Title: Current Microbiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.