LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Colonization Characteristics of Poplar Fungal Disease Biocontrol Bacteria N6-34 and the Inhibitory Effect on Pathogenic Fungi by Real-Time Fluorescence Quantitative PCR Detection.

Photo from wikipedia

Botryosphaeria dothidea is one of the most important diseases which can cause poplar canker. In our previous study, the endophytic Bacillus subtilis N6-34 screened from poplar tissue was found to… Click to show full abstract

Botryosphaeria dothidea is one of the most important diseases which can cause poplar canker. In our previous study, the endophytic Bacillus subtilis N6-34 screened from poplar tissue was found to be an antagonistic strain against B. dothidea. In order to ascertain the colonization rule of B. subtilis N6-34 in poplar plants, colonization of B. subtilis N6-34 labeled with a green fluorescent protein (GFP) was investigated in poplar plants and the rhizosphere soil. To confirm the inhibitory effect of the strain N6-34 on pathogenic fungi, real-time fluorescent quantitative PCR experiment with Fusarium oxysporum as the target strain was carried out. Firstly, a plasmid (pHT01-P43GFPmut3a) containing gfp gene was successfully transformed into wild B. subtilis N6-34, which has the similar characteristics with the strain N6-34 in cell growth and antifungal activity. The poplar pot experiments were carried out to examine the colonization rules and colonization quantity in poplar plants and rhizosphere soil. Observation with a confocal laser scanning microscope showed that GFP-labeled B. subtilis N6-34 (N6-34-GFP) could colonize in primary root, lateral root and adventitious root. With the extension of inoculation time, the colonization quantity of N6-34-GFP in the rhizosphere soil and poplar plants showed a trend of first increasing, then stabilizing for a period of time and then decreasing. The real-time fluorescent quantitative PCR result showed a gradual decrease in the number of F. oxysporum with increasing inoculation time. Therefore, N6-34-GFP exhibited colonization in the rhizosphere soil and different parts of poplar plants. In addition, the strain N6-34 could inhibit the growth of pathogenic fungi. The ability of B. subtilis N6-34 to colonize in the rhizosphere soil and poplar plants and to inhibit fungal growth in vitro suggest a potential application of this strain as a biological control agent.

Keywords: poplar plants; real time; rhizosphere soil; time; pathogenic fungi; colonization

Journal Title: Current microbiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.