LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A gradient flow formulation for the stochastic Amari neural field model.

Photo from wikipedia

We study stochastic Amari-type neural field equations, which are mean-field models for neural activity in the cortex. We prove that under certain assumptions on the coupling kernel, the neural field… Click to show full abstract

We study stochastic Amari-type neural field equations, which are mean-field models for neural activity in the cortex. We prove that under certain assumptions on the coupling kernel, the neural field model can be viewed as a gradient flow in a nonlocal Hilbert space. This makes all gradient flow methods available for the analysis, which could previously not be used, as it was not known, whether a rigorous gradient flow formulation exists. We show that the equation is well-posed in the nonlocal Hilbert space in the sense that solutions starting in this space also remain in it for all times and space-time regularity results hold for the case of spatially correlated noise. Uniqueness of invariant measures, ergodic properties for the associated Feller semigroups, and several examples of kernels are also discussed.

Keywords: field; neural field; stochastic amari; gradient flow

Journal Title: Journal of mathematical biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.