LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of regiocontrolled triarylamine-based polymer with a naphthol unit

Photo by medias_emotiontech from unsplash

Redox-active polytriarylamine with hydroxyl groups is a useful material for optoelectronic applications, especially in the solution-processable multilayer devices. A novel regiocontrolled triarylamine-based polymer, poly(di-5-naphthyl-2-ol)phenylamine, with 2-naphthol units was synthesized via… Click to show full abstract

Redox-active polytriarylamine with hydroxyl groups is a useful material for optoelectronic applications, especially in the solution-processable multilayer devices. A novel regiocontrolled triarylamine-based polymer, poly(di-5-naphthyl-2-ol)phenylamine, with 2-naphthol units was synthesized via oxidative coupling polymerization. Polymerization in tetrahydrofuran using a Cu-amine complex oxidant under O 2 atmosphere produced polymers with number-averaged molecular weights as high as 11,300 g mol −1 . The structure of the polymer was characterized by 1 H and 13 C NMR spectroscopy, showing that the oxidative coupling polymerization occurred at the outer ortho position of the 2-naphthols, preserving the hydroxyl groups. The polymer exhibited good solubility in polar aprotic solvents, with a high thermal stability of 446 °C that corresponded to 5% weight loss. The UV–vis absorption of the polymer was similar to that of DNPA, indicating that the kinked-structured polymer hindered the formation of charge-transfer complexes. These results suggest promising applications of the developed polymer in optoelectronic devices.

Keywords: triarylamine based; based polymer; regiocontrolled triarylamine; synthesis regiocontrolled

Journal Title: Polymer Bulletin
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.