LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aquaporin1 regulates development, secondary metabolism and stress responses in Fusarium graminearum

Photo from wikipedia

The Ascomycete fungus Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley, has become a predominant model organism for the study of fungal phytopathogens. Aquaporins (AQPs)… Click to show full abstract

The Ascomycete fungus Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley, has become a predominant model organism for the study of fungal phytopathogens. Aquaporins (AQPs) have been implicated in the transport of water, glycerol, and a variety of other small molecules in yeast, plants and animals. However, the role of these proteins in phytopathogenic fungi is not well understood. Here, we identified and attempted to elucidate the function of the five aquaporin genes in F. graminearum. The phylogenetic analysis revealed that FgAQPs are divided into two clades, with FgAQP1 in the first clade. The ∆AQP1 mutant formed whitish colonies with longer aerial hyphae and reduced conidiation and perithecium formation. The ∆AQP1 mutant conidia were morphologically abnormal and appeared to undergo abnormal germination. The ∆AQP1 mutant and the wild type strain were equally pathogenic, while the mutant produced significantly higher quantities of deoxynivalenol (DON). The ∆AQP1 mutant also exhibited increased resistance to osmotic and oxidative stress as well as cell-wall perturbing agents. Using FgAQP1-GFP and DAPI staining, we found that FgAQP1 is localized to the nuclear membrane in conidia. Importantly, deletion of FgAQP1 increased the severity of conidium autophagy. Taken together, these results suggest that FgAQP1 is involved in hyphal development, stress responses, secondary metabolism, and sexual and asexual reproduction in F. graminearum. Unlike the ∆AQP1 mutant, the ∆AQP2, ∆AQP3, ∆AQP4 and ∆AQP5 mutants had no variable phenotypes.

Keywords: stress responses; graminearum; fusarium graminearum; aqp1 mutant

Journal Title: Current Genetics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.