Peroxisomes are indispensable organelles that play critical roles in various biological processes in eukaryotic cells. PEX4, one of the peroxins, is the ubiquitin-conjugating enzyme. To functionally characterize roles of FgPEX4… Click to show full abstract
Peroxisomes are indispensable organelles that play critical roles in various biological processes in eukaryotic cells. PEX4, one of the peroxins, is the ubiquitin-conjugating enzyme. To functionally characterize roles of FgPEX4 in the phytopathogenic fungus, Fusarium graminearum, we constructed a deletion mutant of FgPEX4 (ΔPEX4) through homologous recombination. ΔPEX4 displayed reduced mycelial growth, conidiation, and the production of perithecia. ΔPEX4 was defective in pathogenicity and production of the mycotoxin deoxynivalenol (DON). In addition, FgPEX4 was involved in cell wall integrity, lipid droplet accumulation, and the elimination of reactive oxygen species. Western blot analysis revealed reduced phosphorylation of Mgv1 in the ∆PEX4 mutant. Importantly, proteomics analysis indicated that protein expression levels related to protein biosynthesis, fatty acid metabolism, cell wall synthesis, and oxidation–reduction reactions were downregulated in ΔPEX4 compared with the wild type. Taken together, these results demonstrate that FgPEX4 is important for development, pathogenicity, and cell wall integrity.
               
Click one of the above tabs to view related content.